metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Polymeric aqua(µ₄-dihydrogen benzene-1,2,4,5-tetracarboxylato)-(1,10-phenanthroline)cobalt(II)

Mao-Lin Hu,* Hong-Ping Xiao and Ji-Xin Yuan

Department of Chemistry and Material Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China Correspondence e-mail: hml64@sohu.com

Received 14 November 2003 Accepted 19 December 2003 Online 10 February 2004

In the title compound, poly[[aqua(1,10-phenanthroline)cobalt(II)]- μ_4 -dihydrogen benzene-1,2,4,5-tetracarboxylato], [Co(C₁₀H₄O₈)(C₁₂H₈N₂)(H₂O)]_n, each cobalt(II) cation has an octahedral geometry completed by one aqua O atom, three carboxy O atoms belonging to three H₂TCB²⁻ anions (H₂TCB²⁻ is dihydrogen benzene-1,2,4,5-tetracarboxylate) and two N atoms from a 1,10-phenanthroline molecule. In the asymmetric unit, there are two half H₂TCB²⁻ anions lying about independent inversion centres. The bridging H₂TCB²⁻ anions have two coordination modes, *viz.* μ_2 -H₂TCB²⁻ and μ_4 -H₂TCB²⁻, resulting in a two-dimensional coordination polymer. Furthermore, a three-dimensional network is formed by O_{carboxy}···O_{carboxy} hydrogen-bond interactions, with H···A distances in the range 1.69–1.82 Å, and O_{carboxy}···O_{water} interactions, with H···A distances in the range 1.91–1.94 Å.

Comment

Research on metal-directed coordination polymers has been proceeding rapidly owing to their interesting topologies and potential applications as functional materials (Kitagawa & Kondo, 1998; Yaghi *et al.*, 1998; Seo *et al.*, 2000). Bi- or multidentate ligands containing O- or N-donors are often used to coordinate to metal centers (Fujita & Ogura, 1996; Mori & Takamizawa, 2000). Accordingly, benzene-1,2,4,5-tetracarboxylic acid (H₄TCB) is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers (Gutschke *et al.*, 2001), and small changes in experimental conditions (concentration, molecular ratio, solvent *etc.*) can lead to very different architectures. We report here the hydrothermal synthesis and crystal structure of a two-dimensional coordination polymer, *viz.* the title compound, (I).

In (I), each cobalt(II) cation has a six-coordinated environment, composed of one aqua O atom, three carboxy O atoms belonging to three H_2TCB^{2-} anions and two N atoms from a phen (phen is 1,10-phenanthroline) molecule (Fig. 1). The geometry around the cobalt(II) cation is octahedral, with

the four equatorial positions occupied by the two phen N atoms, one carboxy O atom and the aqua O atom, and with all distances lying in the 2.0834 (13)–2.1266 (12) Å range (Table 1). The apical positions are filled by two carboxy O atoms from two different H_2TCB^{2-} anions, the axial bond lengths [2.1220 (12) and 2.1266 (12) Å] being longer than the equatorial bond lengths.

The μ -H₂TCB²⁻ ligands exhibit two coordination modes. In the first, four carboxylate groups, including two undeprotonated carboxylate groups, bond to four cobalt(II) cations; it should be noted that this coordination mode has been rarely reported (Livage *et al.*, 2001). In the second mode, only the two deprotonated carboxylate groups bind to two cobalt(II) cations (Fig. 2); this mode is similar to that reported for Cu(phen)(H₂TCB) (Hu *et al.*, 2003). The μ_2 -H₂TCB²⁻ ligands are parallel to two neighboring phen molecules, but the dihedral angle between the μ_4 -H₂TCB²⁻ ring and the neighboring phen ring is 65.35 (4)°. A two-dimensional network is thus formed by μ_4 -H₂TCB²⁻ and μ_2 -H₂TCB²⁻ ligands, central cobalt(II) cations, aqua molecules and terminal phen molecules. The μ_4 -H₂TCB²⁻ and μ_2 -H₂TCB²⁻ ligands and phen molecules are almost linear along [111]. Moreover, the

Figure 1

The coordination environment of the Co^{II} atom in (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level.

Figure 2

The two-dimensional network in (I).

 $O_{carboxy}$... $O_{carboxy}$ and $O_{carboxy}$... O_{water} hydrogen-bond interactions, with H...A distances in the 1.69–1.82 and 1.91–1.94 Å ranges, respectively (Table 2), connect the two-dimensional networks, resulting in a three-dimensional structure.

Experimental

The title compound was synthesized by a hydrothermal method from a mixture of benzene-1,2,4,5-tetracarboxylic acid (1 mmol, 0.257 g), $Co(SO_4)_2 \cdot 6H_2O$ (1 mmol, 0.281 g), 1,10-phenanthroline (0.05 mmol, 0.0991 g) and 2-aminopyrimidine (2 mmol, 0.192 g) in a 30 ml Teflonlined stainless-steel reactor. The solution was heated at 403 K for 5 d and then cooled slowly to room temperature; red prism-shaped crystals of (I) were collected for X-ray analysis.

Crystal data

$\begin{bmatrix} \text{Co}(\text{C}_{10}\text{H}_4\text{O}_8)(\text{C}_{12}\text{H}_8\text{N}_2)(\text{H}_2\text{O}) \end{bmatrix} \\ M_r &= 509.28 \\ \text{Triclinic, } P\overline{1} \\ a &= 9.6876 \text{ (9) Å} \\ b &= 10.2079 \text{ (10) Å} \\ c &= 11.3561 \text{ (11) Å} \\ \alpha &= 86.808 \text{ (1)}^{\circ} \\ \beta &= 72.141 \text{ (1)}^{\circ} \\ \gamma &= 64.928 \text{ (1)}^{\circ} \\ V &= 964.58 \text{ (16) Å}^3 \end{bmatrix}$	Z = 2 $D_x = 1.753 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 248 reflections $\theta = 2.4-23.0^{\circ}$ $\mu = 0.95 \text{ mm}^{-1}$ T = 273 (2) K Prism, red $0.59 \times 0.55 \times 0.34 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{min} = 0.571, T_{max} = 0.722$ 6669 measured reflections	3371 independent reflections 3215 reflections with $I > 2\sigma(I)$ $R_{int} = 0.012$ $\theta_{max} = 25.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 11$ $l = -13 \rightarrow 13$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.066$ S = 1.07 3371 reflections 315 parameters H atoms treated by a mixture of independent and constrained refinement	$ \begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0313P)^2 \\ &+ 0.522P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{max} = 0.001 \\ &\Delta\rho_{max} = 0.28 \ e \ \text{\AA}^{-3} \\ &\Delta\rho_{min} = -0.29 \ e \ \text{\AA}^{-3} \\ &\text{Extinction correction: } SHELXL97 \\ &\text{Extinction coefficient: } 0.0414 \ (17) \end{split} $

Selected geometric parameters (Å, °).

Co1-O9	2.0834 (13)	Co1-O1	2.1131 (12)
Co1-N1	2.1028 (15)	Co1-O4 ⁱ	2.1220 (12)
Co1-N2	2.1103 (14)	Co1-O5	2.1266 (12)
O9-Co1-N1	173.81 (6)	N2-Co1-O4 ⁱ	84.46 (5)
O9-Co1-N2	94.98 (6)	O1-Co1-O4 ⁱ	93.95 (5)
N1-Co1-N2	79.21 (6)	O9-Co1-O5	85.42 (5)
O9-Co1-O1	94.40 (6)	N1-Co1-O5	97.40 (5)
N1-Co1-O1	91.33 (5)	N2-Co1-O5	97.47 (5)
N2-Co1-O1	170.41 (5)	O1-Co1-O5	85.23 (5)
O9-Co1-O4 ⁱ	87.74 (5)	O4 ⁱ -Co1-O5	173.03 (5)
N1-Co1-O4 ⁱ	89.54 (5)		

Symmetry code: (i) -x, 1 - y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O2−H2···O5	0.82	1.69	2.494 (3)	166
C20-H20···O8	0.93	2.35	2.688 (2)	101
O8−H8···O3 ⁱⁱ	0.82	1.82	2.597 (2)	158
$O9-H9B\cdots O6^{i}$	0.81 (3)	1.94 (2)	2.730 (2)	163 (2)
O9−H9···O3 ⁱⁱⁱ	0.82	1.91	2.668 (2)	153
C8−H8A···O7 ^{iv}	0.93	2.56	3.297 (4)	137
$C16\!-\!H16\!\cdot\cdot\cdot\!O2^v$	0.93	2.41	2.741 (2)	101

Symmetry codes: (i) -x, 1-y, -z; (ii) 1+x, y, z-1; (iii) -x, 1-y, 1-z; (iv) 1-x, 2-y, -z; (v) -1-x, 1-y, 1-z.

The O-H distance was refined subject to a distance restraint [O-H = 0.82 (1) Å]. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å, with $U_{\rm iso}({\rm H})$ values set at $1.2U_{\rm eq}$ (parent atom).

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*.

The authors acknowledge financial support from the Zhejiang Provincial Natural Science Foundation of China (grant No. 202137).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1629). Services for accessing these data are described at the back of the journal.

References

- Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fujita, M. & Ogura, K. (1996). Bull. Chem. Soc. Jpn, 69, 1471-1482.
- Gutschke, S. O. H., Price, D. J., Powell, A. K. & Wood, P. T. (2001). Eur. J. Inorg. Chem. pp. 2739–2741.
- Hu, M.-L., Xiao, H.-P., Wang, S. & Li, X.-H. (2003). Acta Cryst. C59, m454– m455.
- Kitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.
- Livage, C., Guillou, N., Marrot, J. & Ferey, G. (2001). Chem. Mater. 13, 4387–4392.
- Mori, W. & Takamizawa, S. (2000). J. Solid State Chem. 152, 120-129.
- Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, J. Y. & Kim, K. (2000). *Nature*, 404, 982–986.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. (1998). Acc. Chem. Res. 31, 474–484.