Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Polymeric aqua $\left(\mu_{4}\right.$-dihydrogen benzene-1,2,4,5-tetracarboxylato)-(1,10-phenanthroline)cobalt(II)

Mao-Lin Hu,* Hong-Ping Xiao and Ji-Xin Yuan

Department of Chemistry and Material Science, Wenzhou Normal College,
Wenzhou 325027, People's Republic of China
Correspondence e-mail: hml64@sohu.com

Received 14 November 2003
Accepted 19 December 2003
Online 10 February 2004

In the title compound, poly[[aqua(1,10-phenanthroline)-cobalt(II)]- μ_{4}-dihydrogen benzene-1,2,4,5-tetracarboxylato], $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{8}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, each cobalt(II) cation has an octahedral geometry completed by one aqua O atom, three carboxy O atoms belonging to three $\mathrm{H}_{2} \mathrm{TCB}^{2-}$ anions $\left(\mathrm{H}_{2} \mathrm{TCB}^{2-}\right.$ is dihydrogen benzene-1,2,4,5-tetracarboxylate) and two N atoms from a 1,10 -phenanthroline molecule. In the asymmetric unit, there are two half $\mathrm{H}_{2} \mathrm{TCB}^{2-}$ anions lying about independent inversion centres. The bridging $\mathrm{H}_{2} \mathrm{TCB}^{2-}$ anions have two coordination modes, viz. $\mu_{2}-\mathrm{H}_{2} \mathrm{TCB}^{2-}$ and $\mu_{4}-\mathrm{H}_{2} \mathrm{TCB}^{2-}$, resulting in a two-dimensional coordination polymer. Furthermore, a three-dimensional network is formed by $\mathrm{O}_{\text {carboxy }} \cdots \mathrm{O}_{\text {carboxy }}$ hydrogen-bond interactions, with $\mathrm{H} \cdots A$ distances in the range $1.69-1.82 \AA$, and $\mathrm{O}_{\text {carboxy }} \cdots \mathrm{O}_{\text {water }}$ interactions, with $\mathrm{H} \cdots A$ distances in the range 1.91-1.94 \AA.

Comment

Research on metal-directed coordination polymers has been proceeding rapidly owing to their interesting topologies and potential applications as functional materials (Kitagawa \& Kondo, 1998; Yaghi et al., 1998; Seo et al., 2000). Bi- or multidentate ligands containing O - or N -donors are often used to coordinate to metal centers (Fujita \& Ogura, 1996; Mori \& Takamizawa, 2000). Accordingly, benzene-1,2,4,5-tetracarboxylic acid $\left(\mathrm{H}_{4} \mathrm{TCB}\right)$ is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers (Gutschke et al., 2001), and small changes in experimental conditions (concentration, molecular ratio, solvent etc.) can lead to very different architectures. We report here the hydrothermal synthesis and crystal structure of a two-dimensional coordination polymer, viz. the title compound, (I).

In (I), each cobalt(II) cation has a six-coordinated environment, composed of one aqua O atom, three carboxy O atoms belonging to three $\mathrm{H}_{2} \mathrm{TCB}^{2-}$ anions and two N atoms from a phen (phen is 1,10-phenanthroline) molecule (Fig. 1). The geometry around the cobalt(II) cation is octahedral, with
the four equatorial positions occupied by the two phen N atoms, one carboxy O atom and the aqua O atom, and with all distances lying in the $2.0834(13)-2.1266(12) \AA$ range (Table 1). The apical positions are filled by two carboxy O atoms from two different $\mathrm{H}_{2} \mathrm{TCB}^{2-}$ anions, the axial bond lengths $[2.1220$ (12) and $2.1266(12) \AA$ A being longer than the equatorial bond lengths.

(I)

The $\mu-\mathrm{H}_{2} \mathrm{TCB}^{2-}$ ligands exhibit two coordination modes. In the first, four carboxylate groups, including two undeprotonated carboxylate groups, bond to four cobalt(II) cations; it should be noted that this coordination mode has been rarely reported (Livage et al., 2001). In the second mode, only the two deprotonated carboxylate groups bind to two cobalt(II) cations (Fig. 2); this mode is similar to that reported for $\mathrm{Cu}(\mathrm{phen})\left(\mathrm{H}_{2} \mathrm{TCB}\right)\left(\mathrm{Hu}\right.$ et al., 2003). The $\mu_{2}-\mathrm{H}_{2} \mathrm{TCB}^{2-}$ ligands are parallel to two neighboring phen molecules, but the dihedral angle between the $\mu_{4}-\mathrm{H}_{2} \mathrm{TCB}^{2-}$ ring and the neighboring phen ring is $65.35(4)^{\circ}$. A two-dimensional network is thus formed by $\mu_{4}-\mathrm{H}_{2} \mathrm{TCB}^{2-}$ and $\mu_{2}-\mathrm{H}_{2} \mathrm{TCB}^{2-}$ ligands, central cobalt(II) cations, aqua molecules and terminal phen molecules. The $\mu_{4}-\mathrm{H}_{2} \mathrm{TCB}^{2-}$ and $\mu_{2}-\mathrm{H}_{2} \mathrm{TCB}^{2-}$ ligands and phen molecules are almost linear along [111]. Moreover, the

Figure 1
The coordination environment of the $\mathrm{Co}^{\mathrm{II}}$ atom in (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level.

Figure 2
The two-dimensional network in (I).
$\mathrm{O}_{\text {carboxy }} \cdots \mathrm{O}_{\text {carboxy }}$ and $\mathrm{O}_{\text {carboxy }} \cdots \mathrm{O}_{\text {water }}$ hydrogen-bond interactions, with $\mathrm{H} \cdots A$ distances in the $1.69-1.82$ and $1.91-1.94 \AA$ ranges, respectively (Table 2), connect the two-dimensional networks, resulting in a three-dimensional structure.

Experimental

The title compound was synthesized by a hydrothermal method from a mixture of benzene-1,2,4,5-tetracarboxylic acid ($1 \mathrm{mmol}, 0.257 \mathrm{~g}$), $\mathrm{Co}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 0.281 \mathrm{~g}), 1,10$-phenanthroline $(0.05 \mathrm{mmol}$, 0.0991 g) and 2-aminopyrimidine ($2 \mathrm{mmol}, 0.192 \mathrm{~g}$) in a 30 ml Teflonlined stainless-steel reactor. The solution was heated at 403 K for 5 d and then cooled slowly to room temperature; red prism-shaped crystals of (I) were collected for X-ray analysis.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{8}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=509.28$
Triclinic, $P \overline{1} \overline{1}$
$a=9.687(9) \AA$
$b=10.2079(10) \AA$
$c=11.3561(11) \AA$
$\alpha=86.808(1)^{\circ}$
$\beta=72.141(1)^{\circ}$
$\gamma=64.928(1)^{\circ}$
$V=964.58(16) \AA^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.571, T_{\text {max }}=0.722$
6669 measured reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.753 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 248 \\
& \quad \text { reflections } \\
& \theta=2.4-23.0^{\circ} \\
& \mu=0.95 \mathrm{~mm}^{-1} \\
& T=273(2) \mathrm{K} \\
& \text { Prism, red } \\
& 0.59 \times 0.55 \times 0.34 \mathrm{~mm}
\end{aligned}
$$

3371 independent reflections
3215 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 11$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.066$
$S=1.07$
3371 reflections
315 parameters
H atoms treated by a mixture of
\quad independent and constrained
\quad refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 9$	$2.0834(13)$	$\mathrm{Co} 1-\mathrm{O} 1$	$2.1131(12)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.1028(15)$	$\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.1220(12)$
$\mathrm{Co} 1-\mathrm{N} 2$	$2.1103(14)$	$\mathrm{Co} 1-\mathrm{O} 5$	$2.1266(12)$
			$84.46(5)$
$\mathrm{O} 9-\mathrm{Co} 1-\mathrm{N} 1$	$173.81(6)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$93.95(5)$
$\mathrm{O} 9-\mathrm{Co} 1-\mathrm{N} 2$	$94.98(6)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$85.42(5)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$79.21(6)$	$\mathrm{O} 9-\mathrm{Co} 1-\mathrm{O} 5$	$97.40(5)$
$\mathrm{O} 9-\mathrm{Co} 1-\mathrm{O} 1$	$94.40(6)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 5$	$97.47(5)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1$	$91.33(5)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 5$	$85.23(5)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 1$	$170.41(5)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 5$	$173.03(5)$
$\mathrm{O} 9-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$87.74(5)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 5$	
$\mathrm{~N} 1-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$89.54(5)$		

Symmetry code: (i) $-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}$	0.82	1.69	2.494 (3)	166
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{O}$	0.93	2.35	2.688 (2)	101
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 3^{\text {ii }}$	0.82	1.82	2.597 (2)	158
O9-H9B $\cdots \mathrm{O}^{\text {i }}$	0.81 (3)	1.94 (2)	2.730 (2)	163 (2)
$\mathrm{O} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\text {iii }}$	0.82	1.91	2.668 (2)	153
$\mathrm{C} 8-\mathrm{H} 84 \cdots \mathrm{O} 7^{\text {iv }}$	0.93	2.56	3.297 (4)	137
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 2^{\text {v }}$	0.93	2.41	2.741 (2)	101

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1+x, y, z-1$; (iii) $-x, 1-y, 1-z$; (iv) $1-x, 2-y,-z ;(\mathrm{v})-1-x, 1-y, 1-z$.

The $\mathrm{O}-\mathrm{H}$ distance was refined subject to a distance restraint $[\mathrm{O}-$ $\mathrm{H}=0.82(1) \AA]$. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL.

The authors acknowledge financial support from the Zhejiang Provincial Natural Science Foundation of China (grant No. 202137).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1629). Services for accessing these data are described at the back of the journal.

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Fujita, M. \& Ogura, K. (1996). Bull. Chem. Soc. Jpn, 69, 1471-1482.
Gutschke, S. O. H., Price, D. J., Powell, A. K. \& Wood, P. T. (2001). Eur. J. Inorg. Chem. pp. 2739-2741.
Hu, M.-L., Xiao, H.-P., Wang, S. \& Li, X.-H. (2003). Acta Cryst. C59, m454m455.
Kitagawa, S. \& Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739-1753.
Livage, C., Guillou, N., Marrot, J. \& Ferey, G. (2001). Chem. Mater. 13, 43874392.

Mori, W. \& Takamizawa, S. (2000). J. Solid State Chem. 152, 120-129.
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, J. Y. \& Kim, K. (2000). Nature, 404, 982-986.
Yaghi, O. M., Li, H., Davis, C., Richardson, D. \& Groy, T. (1998). Acc. Chem. Res. 31, 474-484.

